
HeterogeneousMulti-Mobile Computing
Naser AlDuaij

Department of Computer Science
Columbia University

New York, New York, USA
alduaij@cs.columbia.edu

Alexander Van’t Hof
Department of Computer Science

Columbia University
New York, New York, USA
alexvh@cs.columbia.edu

Jason Nieh
Department of Computer Science

Columbia University
New York, New York, USA
nieh@cs.columbia.edu

ABSTRACT
As smartphones and tablets proliferate, there is a growing demand
for multi-mobile computing, the ability to combine multiple mobile
systems into more capable ones. We present M2, a system for multi-
mobile computing that enables existing unmodified mobile apps to
share and combine multiple devices, including cameras, displays,
speakers, microphones, sensors, GPS, and input. M2 introduces a
new data-centric approach that leverages higher-level device ab-
stractions and hardware acceleration to efficiently share device data,
not API calls. To support heterogeneous devices, M2 introduces
device transformation, a new technique to mix and match differ-
ent types of devices. Example transformations include combining
multiple displays into a single larger display for better viewing, or
substituting accelerometer for touchscreen input to provide a Nin-
tendo Wii-like experience with existing mobile gaming apps. We
have implemented M2 and show that it (1) operates across heteroge-
neous systems, including multiple versions of Android and iOS, (2)
can enable unmodified Android apps to use multiple mobile devices
in new and powerful ways, including supporting users with dis-
abilities and better audio conferencing, and (3) can run apps across
mobile systems with modest overhead and qualitative performance
indistinguishable from using local device hardware.

CCS CONCEPTS
• Human-centered computing → Mobile computing; Ubiq-
uitous and mobile computing systems and tools; Mobile de-
vices; • Software and its engineering → Client-server architec-
tures; Operating systems; Peer-to-peer architectures.

KEYWORDS
Mobile computing; distributed computing; operating systems; mo-
bile devices; remote display; Android; iOS

ACMReference Format:
Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh. 2019. Heterogeneous
Multi-Mobile Computing. In The 17th Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys ’19), June 17–21, 2019,
Seoul, Republic of Korea.ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3307334.3326096

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6661-8/19/06. . . $15.00
https://doi.org/10.1145/3307334.3326096

Figure 1: Multi-mobile computing using fused devices

1 INTRODUCTION
Users rely on tablets and smartphones for their everyday computing
needs. Individual users often ownmultiplemobile systems of various
shapes and sizes [79], and groups of users often have many mobile
systems at their disposal. Since the vision of dynamic composable
computing [72], there has been a growing demand to provide users
with a seamless experience across multiple mobile systems, not just
use them as separate, individual systems. We refer to the ability to
combine the functionality of multiple mobile systems into a more
capable one asmulti-mobile computing [1, 2].
Three examples help illustrate some of the possibilities. First,

multi-mobile computing makes it straightforward to remote control
other devices such as cameras, and provide richer input modalities
beyond touchscreen input such as motion-based game controllers or
more accessible interfaces for users with disabilities. Second, multi-
mobile computing makes it easy for users to combine their tablets
together in a self-organizing multi-headed display and input surface
for a big screen experience for all users anywhere, even when a big
bulky screen is not available, as shown in Figure 1. Similarly,multiple
smartphones can combine cameras together to provide panoramic
video recording without specialized hardware. Third, multi-mobile
computingmakes it easy touseusers’ smartphonesdistributedacross
a room to leverage their microphones frommultiple vantage points.
Together, they can provide superior speaker-identifiable sound qual-
ity and noise cancellation for audio conferences, without costly
specialized equipment. Unlike simple one-to-one I/O sharing ap-
proaches [4, 15, 30, 52] such as Apple AirPlay [10] which can display
content from a smartphone to an Apple TV [11], multi-mobile com-
puting envisions a broader, richer experiencewith the ability to com-
bine multiple devices frommultiple systems together in newways.

Although multi-mobile computing has the potential to provide a
wide range of powerful new app functionality, three key challenges
must be met to turn this potential into reality. First, mobile systems
are highly heterogeneous; onAndroid alone,more than 24,000 differ-
ent systems are available [55]. They are tightly integrated hardware
platforms that incorporate a plethora of different hardware devices
using non-standard interfaces. Many different versions of software

https://doi.org/10.1145/3307334.3326096
https://doi.org/10.1145/3307334.3326096
https://doi.org/10.1145/3307334.3326096

run on these systems, including many versions of iOS and Android,
especially the latter given the fragmentation of the Android market.
This level of device, hardware, and software heterogeneity makes it
difficult to combinemultiple devices together across mobile systems.
Second, smartphone and tablet devices consume and produce a wide
range of disparate input and output data in heterogeneous data for-
mats, from a variety of sensor readings to rich audio and videomedia
content. This level of data heterogeneity makes it difficult to com-
bine and share smartphone and tablet devices so that different types
of devices can be redirected, mixed, and matched together across
mobile systems. Finally, good performance is essential to support
high-bandwidth and time-critical devices across the network.

We introduce M2, the first system for heterogeneous, transparent,
multi-mobile computing. M2 redirects and transforms heteroge-
neous device input and output across heterogeneous, commodity
mobile systems to transparently enable new ways of sharing and
combining multiple devices with existing unmodified apps. M2 is
based on two key observations. First, unlike traditional desktop and
server systems, mobile systems are highly vertically integrated, and
each system has its own device-specific APIs. These APIs are often
nonstandard and incompatible with other systems making hetero-
geneity difficult to support by forwarding or remotely calling these
APIs. Second, although lower-level APIs are often device-specific,
the higher-level semantics of device data are well-known and device
data may often have a common format across different platforms,
e.g., H.264 video data.
To solve the device and data heterogeneity problem, M2 builds

on these observations and takes a novel data-centric approach: it
shares device data, not device APIs. This is possible by importing
and exporting data to and from each mobile system using common
cross-platform device data formats, avoiding the need to bridge
incompatible device APIs. This not only allows for simple hetero-
geneous device remoting, but also enables mixing and matching of
different device types across heterogeneous multiple systems. M2
introduces device transformation, a framework that enables disparate
devices across different systems to be substituted and combinedwith
one another to support multi-mobile heterogeneity, functionality,
and transparency. For example, M2 can match heterogeneous input
devices with different coordinate systems. As another example, M2
can enable an app to use, in lieu of a local camera, any remote video
device for input, including a remote camera or remote display output
transparently without requiring any app modifications. Different
types of transformations exist under this framework, such as fused
devices, which fuse multiple devices as shown in Figure 1. M2’s
approach makes it possible for the first time to efficiently share and
access devices across multiple heterogeneous mobile systems.

M2 leverages higher-level device abstractions and mobile system
hardware features to optimize the transfer of device data across
mobile systems with no user-perceived loss of fidelity. For higher-
bandwidth devices, M2 takes advantage of encoding and decoding
hardwarewidely deployed onmobile systems to efficiently compress
device data before transferring it. This simple approach overcomes
the performance problems of previous remote display mechanisms
and yields a high quality visual and audio experience across a wide
range of content, including 3D graphics.
We have implemented M2 on Android and demonstrate that it

transparently provides newmulti-mobile functionality for existing

unmodified Android apps using both Android and iOS remote de-
vices. We show various example use cases that utilize M2 and take
advantage of multi-mobile computing. M2 allows any stock Android
or iOS system to share its devices by running an app which can be
made available in Google Play [26] or the Apple App Store [12]. It
only requires modest user-level framework modifications to allow
unmodified Android apps to access and combine local and remote
devices frommultiple mobile systems. We show that M2 operates
seamlessly across heterogeneous mobile software and hardware
systems, including multiple iOS and Android versions running on
different smartphones and tablets. We demonstrate that M2 pro-
vides multi-mobile functionality with low latency and only modest
performance overhead across even high-bandwidth devices such
as camera, audio, and display, even for 3D graphics-intensive apps.
Using both standardWiFi networks andWiFi Direct [73], our Insti-
tutional Review Board (IRB)-approved user studies show that the
display performance using multiple remote devices with a wide
range of popular apps from Google Play is well synchronized and
visually indistinguishable from using local devices.

2 USAGEMODEL
M2 is designed to be simple touse.Amobile system is adevice server if
it has a device that is being sharedwith other systems, and is a device
client if it is accessing a device being shared by another server. Apps
that access remote devices are run on the client, whereas servers
make their devices accessible. A client may use multiple servers, a
server may be in use by multiple clients, and a mobile system can
be both a server and a client at the same time.

Users can turn their mobile systems into servers by downloading
the M2 app from their platform’s app store, e.g. Google Play or the
Apple App Store. No other software is needed to allow a mobile
system to share its deviceswith other systems. By default, no devices
are shared. To share one or more devices using the app, the user
creates a device profile, which consists of a profile name, a list of
devices to share, an optional password, and optional access control
options that can restrict the systems that can access the device.

Device data on the server is processed by the M2 app. Whenever
the app is running, device data can be captured and sent to the client.
User-related input and output is processed when the app is visible to
the user. For example, when the input device is shared, input data is
captured by running theM2 app, which processes touchscreen input
just like any other app and forwards it to the client. Similarly, when
the display device is shared, display output data from the client is
made visible by drawing the data to the server’s screen when the
M2 app is visible to the user. From M2’s perspective, the M2 app
simply makes the devices on the server system accessible remotely,
and otherwise treats the server like a dumb peripheral system.
To run apps that access remote devices on other mobile systems,

the M2 native frameworks must be installed on the device client.
In practice, we envision mobile ecosystem vendors such as Google
and Apple would include these modifications in their frameworks
to transparently provide multi-mobile functionality to their existing
large installed base of apps; our current implementation fully sup-
ports Android but only supports iOS device servers. Once theM2 na-
tive frameworks are installed, a user canmake remote servers accessi-
blebydownloadingandrunning theM2appon theclient.TheM2app

enables the user to see all available peers on the network currently of-
fering to share devices.Devices on a systemare never sharedwithout
user approval. Multicast DNS (mDNS) [31] is used to facilitate peer
discovery. Using the app on the client, the user can select a device
profile on a server, input the required password if the device profile
is being used for the first time, and the respective remote deviceswill
then be accessible on the client. Apps running on the client can then
access those remote devices. TheM2 app shows both currently active
device profiles as well as previously accessed device profiles, the lat-
ter to make them easy to access again in the future. Accessing device
profiles can also be done by other apps in a programmatic fashion.

Device profiles provide security to prevent outsiders not running
on the user’s system from accessing the user’s devices. Our goal
with M2 is to ensure that it does not increase security risks with
remote device access compared to the security currently provided
bymobile systems. In the case of standard Android apps, once a user
has granted the app permission to access various devices such as
location services, cameras, and the network, an app is free to capture
that data and send it elsewhere. As a result, M2 works to prevent
unauthorized access from outside the local system, but does not
guard against unauthorized access to local devices by apps already
given permission by the user to run on the local system.
Given that a number of devices may be available on a client, M2

allows users to define usage profiles to indicate which collection of
devices are to be used by an app. M2 therefore relies on users to
decide how to share devices. A usage profile specifies which devices
fromwhich server profiles are to be used. Usage profiles are ordered,
so that M2 will select the first usage profile for which all its devices
are available. For example, if a usage profile for using a particular
server tablet’s display is ordered before a usage profile for using the
local system’s display, thenM2will use the remote displaywhenever
it is available and only use the local system’s display if the server
tablet is not available. Usage profiles can be defined to be system-
wide, or can be used on a per app basis so that different apps may
use different usage profiles at a given time.

3 M2ARCHITECTURE
TheM2 architecture addresses three key challenges formulti-mobile
computing. The first is how should device functionality be provided
across multiple systems with heterogeneous devices, hardware, and
software. The second is how to enable disparate devices with het-
erogeneous data formats to be mixed and matched. The third is
ensuring good performance even for high-bandwidth devices across
the network.

3.1 Background
We first provide a brief overview of the way devices are used in
mobile systems, usingAndroid as an exemplary system.Android can
be thought of as having a tall interface to devices through multiple
layers of software [14]. Apps are written in Java and call Java frame-
works, which function as libraries that provide the core public APIs
used by developers for Android functionality including accessing de-
vices. Frameworks use JavaNative Interface (JNI) to package up calls
and pass them via Inter-Process Communication (IPC) to Android
system services, which are shared, long-running system processes
that run in the background and are used to manage devices.

Mobile apps donot see the traditional file-based device abstraction
provided by the kernel, but instead interact with whatever abstrac-
tion is provided by system services [27, 28]. Each type of device
has an associated system service which provides its own special-
ized abstraction. Table 1 lists the major types of user-facing I/O
devices supported in Android. System services implement vendor-
independent software-related device functionality using a plethora
of native frameworks provided by Android. Services interface with
the Hardware Abstraction Layer (HAL), a standardized Android
interface for accessing hardware, to call vendor-specific libraries,
many of which are proprietary, which implement vendor-specific
device functionality. These libraries interface with the Linux oper-
ating system kernel to access the device hardware via device drivers.
Othermobile ecosystems such as iOShave similar software stacks for
accessing devices in which higher-level frameworks communicate
with underlying system services via IPC, and those system services
then manage lower-level device functionality [6, 7].
Given this background regarding the Android device infrastruc-

ture, there are a number of ways in which device functionality can
be provided from a device server to a device client. At the most ba-
sic level, this involves remoting device functionality from server to
client. The common approach used for one-to-one remote device
access is to forward calls from client to server, which can be done
at different layers of the device stack. However, this approach has
fundamental limitations in the context of multi-mobile computing.
For example, Rio [4] partitions the device stack at the kernel in-

terface using traditional device files as the abstraction between the
server, with the real device file, and the client, with the virtual device
file. The virtual device forwards HAL library interactions to the
server, bypassing the local I/O device. For each device, the approach
requires modifying a potentially complex HAL library to add non-
trivial device-specific and system-specific changes to support Rio.
These modifications are not possible for devices with closed-source
proprietary libraries, as is the case with modern devices. The client
and server must also use the same modified device-specific HAL
library, which is Android version specific andmust be ported to each
Android system. For example, whereas a standard Android system
would have one HAL library for the GPS, Rio would require the sys-
tem to have a separate HAL library for each different combination
of remote GPS and Android version. Given the number of devices
per system and the many different devices available across different
Android systems, this approach does not scale to support device
heterogeneity. Furthermore, Android is designed to use a singleHAL
libraryperdevice,making it impossible to supportusingmultiplehet-
erogeneous remote and local devices at the same timewithout signifi-
cant restructuring of Android. For example, a user cannot share their
audio with another system and still receive local notification sounds.

As another example, Mobile Plus [52] partitions the device stack
at the IPC interface to system services by forwarding IPC calls re-
motely. This will also not work across heterogeneous systems since
forwarding requires the exact same IPC interfaces to system services
on both systems. These interfaces vary between Android versions
making interoperability problematic across Android versions not to
mention non-Android systems. IPC interfaces also do not encapsu-
late all necessary communication between apps and devices. Device
data may be exchanged via shared memory, the file system, or Unix
domain sockets as opposed to IPC callback functions.

device system service M2mods. (LOC)
sensor SensorService 123
input InputFlinger 167
location LocationManagerService 97
mic AudioFlinger 86
camera CameraService 201
audio AudioFlinger 77
display SurfaceFlinger 57

Table 1: Android system services andM2modifications

Regardless of the partitioning approach or layer, matchingAPIs to
forward device-related calls is problematic for multi-mobile comput-
ing. First, deviceAPIs usually rely on thehardwaremodel, driver, and
device state, making it difficult if not impossible to match these APIs
across heterogeneous mobile systems. Second, not all app-device
communication can be captured by forwarding calls, such as data
exchanged via shared memory, making it problematic to support
full device functionality. Third, forwarding APIs usually involves ex-
changing rawAPI-specific datawhich is detrimental to performance
for high-bandwidth devices, as evident by the performance problems
and lack of high-bandwidth device support in approaches such asRio
andMobile Plus. Finally, multi-mobile computing enables sharing,
combining, and mixing multiple devices, not just one-to-one device
sharing. Trying to match APIs and forward calls across multiple
heterogeneous devices is an enormous problem especially since each
call cannot represent more than a single hardware device or type.

3.2 Client-Server Device Stack
To solve the device heterogeneity problem,M2 takes a fundamentally
different data-centric approach that leverages higher-level device
abstractions and hardware acceleration to efficiently share device
data, not device APIs. We observe that although lower-level APIs
are often device-specific and tied to a given mobile platform, the
higher-level semantics of device data arewell-known and often have
a common format across different platforms. For example, PCM is
used for audio and JPEG is used for camera images. Instead of at-
tempting to match heterogeneous APIs and forward device calls,
M2 imports and exports device data while using each platform’s
own APIs. M2 converts, manipulates, forwards, and injects device
data, not APIs, across systems without the need to match APIs. This
allows M2 to handle device heterogeneity, portability, and composi-
tion effectively as long as each platform is able to export device data
as well as import and process device data.

We make three observations regarding the device software stack
in mobile systems that suggests an approach for exporting and im-
porting device data across heterogeneous devices, hardware, and
software. First, for hardware devices of interest such as input, cam-
era, audio, display, sensors, microphone, and GPS, mobile apps do
not access such hardware devices directly but go through system
services. Anything below the level of system services is irrelevant as
far as apps are concerned. Second, system services manage all access
to these hardware devices and represent device data in standard or
well-known formats. This makes device data manipulation feasible
and universal to all apps on a system. Finally, the primary interface
between apps and devices is at user-level, not kernel-level, suggest-
ing that a user-level approach for handling device data is sufficient.

Java	
Framework

Java	Native	
Interface	(JNI)

Native	
Framework

Client	(Apps)

Unmodified	App
Java	

Framework

Java	Native	
Interface	(JNI)

Native	
Framework

Native	Framework

Linux	Kernel

System	Services

Hardware	Interface	Layer	(HAL)	&	
Proprietary	Libraries

Server	(Remote	Devices)

M2	
App

Native	Framework

Linux	Kernel

System	Services

Hardware	Interface	Layer	(HAL)	&	
Proprietary	Libraries

M2	App

Figure 2: M2 architecture; Androidmodifications in grey

Based on these observations, M2 takes a unique approach to par-
titioning device functionality between device server and client that
leverages the characteristics of mobile systems. On the server, anM2
app is used to leverage the entire device stack to access device data
via the same public APIs used by all mobile apps. This completely
avoids the need to modify the software stack and makes importing
or exporting device data as easy and portable as writing an app on
any platform to access local device data.

On the client, M2 introduces user-level virtual devices that import
or export remotedevicedata andappear just likenormal local devices
via system services. By introducing virtual devices via system ser-
vices, M2 avoids the need to implement low-level device interfaces
that are not used by apps and leverages the same platform’s own
higher-level device interfaces to create virtual devices that import
or export device data. Virtual devices do not need to be interface
compatible with any other platform other than the one they are
executed on, avoiding interface compatibility issues across heteroge-
neous systems. Because data formats arewell-known, implementing
virtual devices on each platform is straightforward. Furthermore,
virtual devices can also be created to compose data involving multi-
ple devices and device types. Figure 2 shows an overview of the M2
architecture in Android.

In addition to importing and exporting device data, auxiliary infor-
mation about the data is often included. This information is used to
indicatewhat the format is for the device data and the functionality it
represents. Table 2 lists some of the auxiliary options. Functionality
to distinguish between, for example, camera preview and picture
data is reflected in the auxiliary information in the device data. This
auxiliary information only ever consists of a few bytes, resulting in
negligible overhead while facilitating heterogeneous device support.
Implementing virtual devices requires minimal modifications to

a device’s respective system service and supporting native frame-
works, as discussed in Section 4. Each systemservice ismodified such
that it can receive commonM2 data formats over the network and
convert them to the format the platform expects. Receiving device
data, system services can then encapsulate them as additional virtual
devices presented to apps. Table 2 provides a summary of formats
and types used by M2 for each hardware device. The definition of
these types and formats under M2 is essential to provide a portable

device identifiers, data types, and formats
sensor sensor type, data fields (x, y, z), aux data (e.g., rate)
input gesture (e.g., touch vs swipe), coords. (x, y)
location location type, coords. (x, y, z), aux data (e.g., speed)
mic media format (e.g., AAC), channels, bit/sample rate
camera function (pic vs. video), media format, resolution,

aux data (e.g., flash, timer, HDR, orientation)
audio media format (e.g., AAC), channels, bit/sample rate
display media format (e.g., H.264), resolution, bit rate, fps,

position, scaling
Table 2: M2 formats and types per hardware device

translation medium across different Android versions, hardware
devices, and platforms (e.g., iOS to Android and vice versa).
As an example, following Figure 2, assume an M2 touchscreen

input device client and server. On the server, with the M2 app in the
foreground, when the user touches the screen, the input event is
captured by theM2 app. TheM2 app then standardizes and packages
the input event details, e.g. the coordinates, into theM2 input format.
The event is then forwarded to the input system of the client along
with auxiliary information, notably the server’s display resolution.
Upon receipt, the client’s input system service unpackages the input
event and converts it to the client platform’s input format, scaling the
coordinates if necessary basedon theprovided auxiliary information.

This device data-centric architecture solves the key heterogeneity
challenges of multi-mobile computing. As evidence of this, our M2
prototype has been tested to work, reusing the exact same code,
across five recent and widely used major Android versions.

3.3 Device Transformations
M2 introduces a device transformation framework that makes it
possible for existing apps to transparently use and compose mixes
of local and remote devices, making them multi-mobile without
modification. For example,M2 supports fused devices, a device trans-
formation that combines multiple devices of the same type together
into one. An existing app built to use one display device can instead
use a fused display device to be able to display to multiple displays
instead of just one.
A transformation consists of an input device abstraction, an out-

put device abstraction, and a transformation function. The device
abstraction includes its type andM2 data format. The transforma-
tion function is used to convert the input device abstraction to the
output device abstraction, and can operate on device data or control
information.

To support fuseddevices, translateddevices, andother transforma-
tions, M2 provides a transformation plugin framework that operates
in conjunction with the M2 app. Transformation plugins can be in-
stalled and run on either a device server or client. Plugins provide a
way for vendors or developers to provide transformations,which can
be integrated into M2. In Android, a plugin is a standalone Android
Application Package (APK); it can be downloaded through Google
Play like other Google services. The M2 app exposes a Remote Pro-
cedure Call (RPC) interface implemented via the Android Interface
DefinitionLanguage (AIDL) that allows theseplugins to registerwith
the M2 app to receive device control and data information from de-
sired devices. The plugin can then transform this data and return the
result to theM2 app as a newoutput device abstraction to be directed

to local or remote devices or exposed as a new shareable device. On
the device server, which only needs to run the M2 app, plugins can
have access to most devices at any time, but input only when theM2
app is in the foreground.On thedevice client, plugins canhave access
to devices at any time by leveraging the modified frameworks for
background access. Client-side transformation output is passed back
to system services via the loopback network interface, appearing to
system services in the same manner as remote devices. In iOS, trans-
formations are currently implementedwithin theM2 app, but we en-
vision using iOS action app extensions [9] to support plugins for iOS.

This framework provides four key benefits. First, it provides away
to enhance how users interact with existing apps without the need
tomodify them. Second, by allowing plugins to operate on the server
or client, it provides maximum flexibility to support a wide range of
transformation functionality. Third, by leveraging standard plugin
functionality via APKs, it makes it possible for vendors and develop-
ers to make use of higher-level application interfaces and semantics
to ease programming of transformation functionality. Finally, since
plugins communicate with devices via the M2 app using the same
mechanisms that support remote device server functionality, they
are similarly isolated. The risk of misbehaving plugins is therefore
limited to only the apps that are actively using them as specified in
the user profile, while mitigating the risk to the system as a whole.

To illustrate how the framework can be used, Table 3 shows a non-
exhaustive list of different types of device transformations, along
withadescriptionof eachand someexamples that illustrate theversa-
tility of transformations inM2. One example is a fused display/input
device, illustrated in Figure 1, in which four tablets are combined in
a 2x2 matrix to provide a larger display and input surface. The app is
running on one tablet, the display client, and displaying content on
its display and the three other display servers. Additionally, the app
is receiving touch input from the four touchscreen devices exposed
byM2. To provide fused display, each system runs a plugin with a
display input device abstraction and a display output abstraction.
The plugins use the display ID information, which identifies each
display’s position in the 2x2 grid, to adjust the output abstraction
such that it is scaled to be four times as large and positioned relative
to which quarter needs to appear. Since the plugin only manipulates
control information while leaving the data processing to system
services and the underlying hardware, the display fusion is fast and
efficient. Note that in this scenario the display client is simultane-
ously providing display output to other display serverswhile its own
screen is also part of the fused display.

To provide fused input, M2 runs a plugin on just the device client
where the app runs. The plugin registers to receive input device
abstraction data from all four input devices, one local and three re-
mote, and scales the coordinates of each input device so that each
touchscreen appears to only cover a quarter of the input surface.
This is done based on the display ID information to determine each
touchscreen’s position in the 2x2 grid. It then combines the input
data into a single fused input device which is seen by the app.
Replacement devices can be used to support devices available at

a device server but unknown to a device client. Although M2 allows
each system to use its own device APIs to process device data, it
requires an API to exist. If a device client does not have any support
for a given type of device, it will not be able to access it remotely.
Replacement devices can be used to bridge this gap by translating

transformation types description examples
fused one to many of the same type multi-headed display/input, mirroring speakers
translated one to another of different types camera (eye tracking) to input, audio to display (visualization), sensor to input (Wii-like)
piped output to input device display to cam (Netflix recording), audio to mic (high fidelity audio recording)
replacement translated dev from an unknown dev 3D touch (iOS) to touchscreen input, pressure sensor to systemwithout a pressure sensor
merged merging data components of devices different channels from fused mic (record surround sound), fused camera with merged

frames (e.g., green screen effect to superimpose objects from one frame onto another)
Table 3: M2 device transformation types

an unsupported device into a supported one. For example, Android
does not have existing APIs for pressure sensitive touchscreens such
as Apple’s 3D Touch [8]. M2 can run a device server transformation
extension on iOS that uses the iOS 3D Touch API to translate force
to input touch duration which can then be processed as a regular
touchscreen input device on Android.
To support various types of device transformations, M2 imple-

ments a modified version of BeepBeep [57] for indoor localization.
Thismechanism can be used to automatically configure device trans-
formations that are location dependent, such as determining relative
positioning of devices for fused devices. For example, a fused display
grid can be automatically configured based on the locations of the
systems in the grid. Other localization techniques [41, 71] may also
be used for M2.

3.4 Network Communication
M2 clients and servers communicate over standard network sockets
and are designed to interact overWiFi andWiFi Direct networks, the
latter supporting groups of mobile users anywhere without being
tethered to network infrastructure. M2 leverages common hardware
features of mobile systems to optimize network performance and
security, and is designed to operate effectively even in the presence
of intermittent network failures.

Performance Since high-bandwidth devices send visual and au-
dio data, M2 uses hardware video encoding to compress display data
and hardware audio encoding to compress audio data before trans-
mitting it across the network. At the server, the data is decoded and
outputted. M2 uses H.264 video encoding and AAC audio encoding
for display and audio devices, respectively, which are commonly
availableonsmartphonesand tablets, thoughotherencoding formats
can also be used. These encoders can be configured to use different
resolutions, bit rates, and frame rates, whichM2 can adjust based on
what devices are being used and available bandwidth; M2 by default
uses 30 frames per second (fps) frame rates since they are visually
indistinguishable from higher frame rates for end users [67]. Both
camera and microphone also send video and audio data, which can
also be encoded. In the case of camera, M2 encodes the camera pre-
view data, which can be bandwidth intensive if sending raw frames,
but does not encode the actual pictures taken, which are transmitted
much less frequently. Since hardware is needed for real-time encod-
ing, each system can only encode and decode a limited number of
data streams simultaneously. Given this, M2 encodes the complete
data and transmits the same encoded data to all remote devices even
if each device only uses a portion of the data. This applies to fused
display when each device only displays a portion of the data. Al-
though this uses some additional bandwidth, it saves on the number
of encoders used at the client. The display data can then be efficiently
scaled and resized appropriately for viewing at the remote display
based on the hardware characteristics of the respective screen.

Security To optimize network security, M2 leverages AES accel-
eration hardware on mobile systems to provide secure client-server
communications using 128-bit AES encryption. At install time, the
M2 app generates a public/private key pair to facilitate secure shar-
ing of runtime generated AES session keys. These public keys are
exchangedbetween relevantmobile systemsonce theuser specifies a
deviceprofile touse (thekey’sfingerprintsarevisible to theuseronall
systems allowing the user to verify their authenticity). M2 encrypts
device data with separate session keys for each device as opposed to
separate session keys for every client system. This way, device data
is only encrypted once regardless of the number of clients, but still
prevents, for example, one systemwith access to a remote sensor de-
vice fromaccessing display data being sharedwith a different system.
Should the user alter the mobile systems allowed to access a device,
that device session key is regenerated and retransmitted to all clients.

Reliability To ensure operational reliability, M2 maintains all
app state on the device client and tailors the transport mechanism
used based on the device data being delivered. By relying on the
decoupling of apps from devices provided by system services, M2
treats remote devices as dumb peripherals. App state is entirely on
the client and network disconnections do not cause app failures. A
remote device can be disconnected and reconnected at any time and
an app that was using the device will continue to function prop-
erly in the presence of such device disconnections. For example,
app-related graphics and display state is entirely on the client en-
capsulated in state in the app as well as display surfaces managed by
SurfaceFlinger, the Android display-related system service. If a
disconnection happens, the app continues to function properly and
can continue to draw to its respective display surface, oblivious as to
whether the system service is still able to send the data to the remote
display device. This is useful in the presence of intermittent network
disconnections between server and client due to systemmobility or
other environment conditions affecting wireless networks.

Network disconnections are managed by system services, which
can provide transparent support for apps. For example, if a sensor de-
vicebecomespersistentlydisconnected, theSensorServicecansim-
ply replace the original sensor data source with a local sensor device
instead to provide sensor data. M2 distinguishes between intermit-
tent and persistent network disconnections based on heartbeats and
timeouts.Bydefault,M2doesnothingonapersistentnetworkdiscon-
nection, so apps continue normal operation but receive no input and
remote devices receive no output. Unmodified apps are resilient to
failures fromreceivingno input since theyrelyoncallbacks fordevice
data. For example, if a connected remote sensor does not exist locally
and a disconnection occurs, the app will continue to function whilst
waiting for remote sensor data to trigger the app’s callback function.

For control messages and devices which expect lossless data, M2
uses TCP to ensure reliable data delivery. For devices such as display,
audio, and the camera preview, UDP is used since some loss can be

tolerated and timing is important for these streaming devices. Data
that is late as indicated by timestamps or not delivered due to packet
loss is simply discarded. The same timestamps are combined with
NTP and best practices to ensure media synchronization across de-
vices [40, 48, 62, 64].Multicast or pseudo-broadcast [33]may become
viable options to use in the future, but existing implementations ei-
ther have poor performance or require firmware changes.

4 IMPLEMENTATION
WeimplementedM2 in theAndroidOpenSourceProject (AOSP) [25],
and also as an M2 device server app for iOS, enabling remote device
access across Android and iOS. The implementation has three parts:
an M2 app, minor modifications to Android system services, and an
M2 support library. The modifications required for each Android
system service are modest, as shown in Table 1, averaging fewer
than 120 lines of code (LOC). Since these changes are so minimally
invasive, supporting newer platform versions often requires no addi-
tional modifications. Similarly, any newly introduced devices can be
easily supported so long as the device is used via a system service. An
M2 format for the device will need to be created, the system service
modified to support this format, and the M2 app updated to access
the new device.
The bulk of the code is system service independent and con-

fined to the M2 support library, which provides networking, en-
coding, encryption, and configuration APIs. The latter is used to
get configuration-related profile information such as what and how
devices should be shared. This is useful for system services to decide
where the data should go. M2 also uses the Mongoose embedded
networking library [18] and a JSON parser library [42]. Except for
Android system services modifications, all of the code is portable
across Android and iOS. Due to space constraints, we only provide
a brief overview of howM2 interfaces with Android to capture and
deliver device data. These same interface points are also used to
support device transformation plugins.
For input, location, and sensor devices, the M2 app obtains de-

vice data on the device server by using public Android APIs to
register listener classes: an OnTouchListener for input events, a
LocationListener for location, and a SensorEventListener for
sensors. Upon receipt of device data, the M2 app uses the M2 library
APIs to package the data and send it to device clients. On the device
client, system services are modified to listen for this data and upon
receipt, provide this data to apps. For input devices, InputFlinger
ismodified to call Android’s InputDispatcher injectInputEvent
function, providing theappwith the input event. For locationdevices,
the LocationManagerService ismodified such that upon receipt of
a location update from a device server, an app’s LocationListener
callback function is called and given the data as a Location argu-
ment. For sensor devices, unlike location devices, it is not sufficient
to call an app’s listener callback function directly because apps can
also use an alternative queue-based approach for obtaining sensor
data via Android’s Native Development Kit (NDK). Since both the
Java framework and NDK use SensorService’s SensorEventQueue
to obtain events, wemodify it to also deliver remote sensor data from
device servers when it is read.

Supporting audio output and input involved similar methods. To
support output devices such as speakers, the M2 app on the device

server listens for audio data sent from a device client. The app then
plays the received audio via Android’s AudioTrack API. To cap-
ture audio on the device client, AudioFlinger’s FastMixer main
loop, onWork, where audio is mixed and played, is modified to in-
tercept audio buffers. The audio is then encoded and forwarded to
the device server. Similarly, to support microphone, the M2 app on
the device server uses Android’s AudioRecord API to record au-
dio, encode it, and send it to a device client. On the device client,
AudioFlinger’s RecordThread’s main loop, threadLoop, where
most audio is recorded, is modified to write received audio into
the receiving app’s RecordTrack buffer. Equivalent modifications
to AudioFlinger for audio input support were also made for the
low-latency FastCapture thread.
To support display, the M2 app on the device server receives

video data from the device client, decodes it, and draws it on a full
screen Surface, a buffer that Android’s screen compositor displays
to the user. To send the video data, the device client uses Android’s
VirtualDisplay to add an additional mirrored output. The frames
Android sends to the VirtualDisplay are then encoded and sent
to a device server. We also modified SurfaceFlinger to support
ignoring tagged Surfaces. For example, supporting fused display
involves drawing full screen video data on one Surface that is sent
to the VirtualDisplay, then hiding that Surface behind another
on which is drawn the portion of the screen that should be visible
locally. The top Surface is only visible locally and is tagged so that
it is ignored and not sent to the VirtualDisplay.
To support cameras, the M2 app on the device server provides

a Surface on which the camera preview displays camera frames.
The Surface is recorded by the M2 app by taking the raw frames,
encoding them, and sending them to the device client. To enable apps
on the device client to use the remote camera preview, the device
client’s CameraService’s CameraClient and Camera2Client are
modified such that the received preview frames are drawn to an
app’s preview Surface instead of activating and using local camera
frames. To take a photo, theM2 app on the device server is sent the re-
quest, takes the photo, and sends it to the device client. On the client,
the CameraService is modified to call an app’s onPictureTaken
callback, used for receiving a taken picture, upon receipt of a photo
from a device server. This callback is implemented by apps as part of
the Android photo taking workflow. Camera options such as HDR,
flash, orientation, etc., are reflected in the auxiliary information. To
take a video, the M2 app on the device server is sent the request,
starts recording video, and sends the file in chunks.

5 EVALUATION
Wemeasured the performance of M2 across a range of Android and
iOS hardware and software, including both tablets and smartphones.
We first describe ways in which we have used M2 with popular un-
modified Android apps in various user studies, then present some
quantitative performance measurements, and finally compare M2
with other approaches. We also provide a video demo [3].

As listed in Table 4, we ran M2 across heterogeneous smartphone
and tablet configurations running five different SoCs and nine dif-
ferent versions of Android and iOS, including Android versions
Jelly Bean (4.3), KitKat (4.4), Lollipop (5.0), Marshmallow (6.0.x), and
Nougat (7.1.1). We conducted experiments with both WiFi Direct

name system type display SoC OS
N4J Nexus 4 tablet 768x1280 Snapdragon S4 Pro Android 4.3
N4 Nexus 4 tablet 768x1280 Snapdragon S4 Pro Android 4.4
N5 Nexus 5 phone 1080x1920 Snapdragon 800 Android 6.0.1
N7 Nexus 7 tablet 1200x1920 Snapdragon S4 Pro Android 6.0
N9 Nexus 9 tablet 1536x2048 Tegra K1 Android 5.0
N9N Nexus 9 tablet 1536x2048 Tegra K1 Android 7.1.1
iPd iPad mini tablet 768x1024 Apple A5 iOS 8.2
iPh9 iPhone 6S phone 750x1334 Apple A9 iOS 9.3.1
iPh iPhone 6S phone 750x1334 Apple A9 iOS 10.3.1

Table 4: Heterogeneous systems used for runningM2

and regularWiFi, the latter by connecting systems to an ASUS RT-
AC66UWiFi router; the router was used by default unless otherwise
indicated. Only the Nexus 9 and iPhone 6S support and use IEEE
802.11ac; the other systems use IEEE 802.11n.

5.1 Example Use Cases
iOS and Android apps on iPhone First, we simply made iOS re-
mote devices available toAndroid apps, including sending iOS touch-
screen input to the apps and displaying app output to the iOS display,
allowing an iPhone 6S with an unmodified iOS to effectively run
unmodified iOS and Android apps from the same system for the first
time.

Self-organizingmulti-headed display and input Second, we
used fuseddevices for display and input to allow four systems in a 2x2
layout to be combined as one, as shown in Figure 1. The systems auto-
matically self-configure using localization to identify which system
was positioned where in the 2x2 grid, and can be rearranged at any
time on the fly. Display and input are split across all screens provid-
ing a larger multi-headed display experience that is easily portable
and available anywhere. Because displaying across multiple devices
can be bandwidth-intensive,we used thisM2 configuration formany
of our performance measurements in Section 5.2, including using
popular display-intensive Android apps. As a useful sysadmin alter-
native, we also did the reverse, allow one system to split its screen
in a 2x2 layout to control four other systems instead. We did a small
user study by asking 20 users, half of them computer-savvy users
and half of them not, to compare the display quality while watching
Big Buck Bunny [17], thewidely used openmovie project, on the 2x2
fused display versus a single Nexus 9 local display. All of the users
said that the fused display performance was well synchronized and
visually indistinguishable from using a single local display, except
for being clearly larger andmulti-headedwith some bezel separation
between the displays. The visibility of bezels will only continue to
diminish asmobile systems increasingly have higher screen-to-body
ratios [36, 61, 68, 74].

Audio conferencing Third, we created a fused microphone de-
vice to allowmicrophone input from the microphones of multiple
systems to be combined as one, providing a 3D-like audio experience
useful for Skype [43] or audio conferencing apps. Microphone data
frommultiple sources was mixed to stereo channels. The same sam-
pling rate, timestamps, and an initial beep at a specified frequency
were used for audio synchronization across systems. As an experi-
ment, we placed a Skype VoIP call to a conference room and had the
person in the roommove around while speaking. The conference
roomwas set upwith three smartphones placed at different locations
in the room and a Polycom SoundStation IP 7000 teleconferencing

system in the center of the room.We recorded the call audio from the
conference room when using one smartphone, fused microphone
with the three smartphones, and the dedicated teleconferencing
system. We then did a small user study by asking 20 users, half of
them computer-savvy users and half of them not, to listen to the
three recordings.All of themsaid that the fusedmicrophone from the
smartphones providedbetter audio clarity than theother approaches.
It also provides the same ease of use of just having to connect one
system in the room to the audio conference.

Wii-like Android gaming Fourth, we used a translated device
from accelerometer sensor data to input touches to provide aWii-
like experience for various unmodified Android games. Wemap five
movements based on accelerometer changes, right to left, left to
right, up, down, and forward, to five respective touchscreen gestures,
swipe left, swipe right, swipe up, swipe down, and swiping in a V
shape, which match various first-person Android game experiences.
We used this translated device configuration for two Android games,
Epic Swords 2 and 3D Tennis. We did a small user study with 20
users, half of them computer-savvy users and half of them not, and
all of them said that using a smartphone to control the game running
on a tablet via M2 provided a much more intuitive, realistic gam-
ing experience than the native game used with touchscreen input.
Epic Swords 2 feels more realistic swinging a smartphone to control
sword movements during a sword fight than swiping across the
touchscreen, especially using a realistic stabbing movement to stab
the sword instead of an unnatural V swipe using the touchscreen. 3D
Tennis also feels more realistic swinging a smartphone as a tennis
racquet to play tennis instead of swiping across the touchscreen.

Eye movement input for hands-free users Fifth, we used a
translated device to transform eye movements into touchscreen in-
put. This is a useful accessibility feature for disabled users without
good use of their hands or users whose hands are full, e.g., while
cooking. The device server used the camera for eye tracking via face
detection functionality provided by OpenCV [54], an open source
library for real-time computer vision. The movements were then
transformed into input swipes and sent as input data so that the
device client receives touchscreen input data instead. We were able
to use this successfully with a number of Android apps ranging from
reading an ebook using the Amazon Kindle app to playing Temple
Run by simply looking left, right, up, and down to effectively swipe
in those directions.

High-qualitymedia recording Sixth, we used a translated de-
vice to record movies playing on another system. Instead of having
the audio and video data go to remote audio and display devices, we
mapped the audio to go to the remotemicrophone and the video to go
to the remote camera. This allows any camera app on the remote sys-
tem to view and record the audio and video output of another system.
The camera app perceives the display and audio data streams as cam-
era and microphone input, but not via the physical microphone or
camera lens.The transformationpluginweused for video ignores the
secure flag for display surfaces so that it can be viewedonnon-secure
displays and recorded.We used this configuration to play amovie on
one Android system using the Netflix app, and record it on another
using the stock Android camera app. Similarly, we recorded a video
being played by the YouTube app. The recordings were high quality,
well synchronized, andplayableusing theAndroidstockvideoplayer,
allowing the user to play them at a later time, e.g., on an airplane.

Display performance (PassMark)
Stock Stock AOSP on N9
Idle M2 installed on N9 but idle
One M2 displaying locally on the same N9
Two M2w/ 2 N9s in a 2x1 configuration
Four M2 w/ 4 N9s in a 2x2 configuration (Figure 1)
Mixed M2 w/ 1-to-many mirroring from N9 to N9N, N7, and N5
Mixed iOS Same as mixed but mirroring to iPd instead of N9N
Camera latency (take photo)
N4 AOSP Stock AOSP on N4, 8MP camera
N7 AOSP Stock AOSP on N7, 5MP camera
N9/N9N AOSP Stock AOSP on N9/N9N, 8MP camera
iPh iPhone 6s, 12MP camera
N7 using N4 M2 N7 using remote N4 camera
N7 using N9 M2 N7 using remote N9 camera
N4 using N9 M2 N4 using remote N9 camera
N4 using N7 M2 N4 using remote N7 camera
N4 using N7 M2 N4 using remote N7 camera
N9N using iPh M2 N9N using remote iPh camera
Audio latency (Zoiper)
N7 AOSP Stock AOSP on N7, local mic and speaker
N7 Idle M2 installed on N7 but idle, local mic and speaker
N7 w/ N7 speaker M2 N7 using local mic and remote N7 speaker
N7 w/ N7 mic M2 N7 using local speaker and remote N7 mic
N7 w/ N7 mic+speaker M2 N7 using remote N7 mic and speaker
N7 w/ N4J mic M2 N7 using local speaker and remote N4J mic
N7 w/ N9 speaker M2 N7 using local mic and remote N9 speaker
Multi-mobile Android apps (7 systemmulti-mobile configuration)
7 Android systems combined in a multi-mobile setup with
1 N9 client running the apps, 60 fps, 10 Mbps bit rate,
1 N4 providing remote sensor and touchscreen input,
2 N7s as remote speakers, separate left and right audio channels, and
3 N9s as display servers in 2x2 large display grid with N9 client
Power consumption
Stock Stock AOSP on N5
One M2 N5 local device usage with no remote devices
Two M2 N5 client plus an N7 device server
Four M2 N5 client, 2 N7 and 1 N9 device servers
Remote M2 N5 device server with an N7 client

Table 5: M2 configurations for running benchmarks

Panoramic video recording Seventh, we used fused devices to
enable panoramic video recording using the cameras of multiple
smartphones without any specialized hardware and using the ex-
isting unmodified stock Android camera app. Smartphones provide
panoramic photo functionality, but no panoramic video.We fuse the
camera inputs from two systems to create a wider panoramic view
which can be recorded as video or photos. This is useful, for example,
when parents seated next to each other want to record a child’s
school or sports performance. Often, neither parents’ smartphones
can individually capture the whole performance, but taken together
with M2, they can provide a complete panoramic video recording.
The prototype requires the two systems to be relatively fixed in
position with respect to each other and video quality is sensitive to
camera angle and positioning. Better methods for stitching video
data frommultiple cameras can be used [58].

5.2 PerformanceMeasurements
We ran benchmarks and unmodified Android apps fromGoogle Play
to quantify M2 performance using various combinations of tablets
and smartphones serving as different remote devices, as listed in
Table 5. Systems are named as listed in Table 4.

Display performance We first measure display performance
since it is crucial and a key performance challenge. Using the multi-
headed display and input configuration from Section 5.1, we ran the

widely used Android PassMark benchmark [56], a set of resource
intensive tests to evaluate CPU, memory, I/O, and graphics perfor-
mance. To account for frame drops at display servers not captured
by the benchmark app, we scale the results based on the percentage
of frames displayed at the server, similar to slow-motion benchmark-
ing [50, 77]. For example, if only half of the frames are displayed by
the server, then the benchmark measurement reported by the app
is reduced by half.
We ranM2 with PassMark in seven system configurations listed

in Table 5, all using an N9 to run the app and various display servers,
including anN9N,N7, N5, and iPd.We used the full 1536x2048 native
display resolution for all N9 experiments; display encodingwas done
at a variable fps limited to 30 fps and a 10 Mbps bit rate. The high
resolution and bit rate were used to stress the system. For the mixed
cases, we used a 720x1280 display resolution for all experiments
since there is a resolution limit imposed by the N7 H.264 hardware
decoder; display encodingwas done at 30 fps and a 4Mbps bit rate. To
show that M2 can run without additional network infrastructure, all
testswere done usingWiFiDirect, except for the last one,which used
theWiFi router since the iPad mini does not support WiFi Direct.

Figure 3 shows the PassMark benchmark measurements normal-
ized to stock Android Lollipop performance; lower is better. M2 idle
is omitted since it performed essentially the same as stock Android.
Due to space constraints, the individual tests are grouped underCPU,
disk, andmemoryusingPassMark’soverall score for thosecategories,
while the2Dand3Dindividual testsareshownseparately. For the two
and four systemexperiments,wepresent results for theworst remote
device; in all cases, the remote devices performed similarly. Figure 3
shows that M2 incurs some additional overhead as the number of
remotedisplaydevices increases, but it ismodest and insometestsun-
correlated with the number of devices used. In all cases, the network
was not a performance bottleneck and dropping frames or packets
was not an issue. In comparing the mixed and homogeneous display
measurements, both using four Android systems, the performance is
similar even though the homogeneous case uses a much higher res-
olution and bit rate, showing that M2 scales well with increasing de-
vices and higher video quality.When usingmultiple displays, the dis-
play quality across the devices appeared qualitatively the same. The
lone device case shows slightly better performance since it does not
send packets out to the network, but includes encryption/decryption
and encoding/decoding costs. This is more apparent with the solid
vectors, image filters, 3D complex tests which use more bandwidth
due to the higher number of changes and therefore, encoded frames.

Performance for the remote display devices was visually indistin-
guishable from stock Android, but quantitatively shows a range of
performance overhead from less than 1% for the 3D simple test to
around 60% for the 2D solid vectors test. PassMark is designed to
stress test the system, so its quantitative performance is a conserva-
tive measure of real app performance.
Figure 4 shows the per device average network bandwidth re-

quired while running the PassMark tests, aggregated into the mini-
mally graphicalCPU, disk, andmemory tests, 2D tests, 3D simple test,
and 3D complex test. The network bandwidth required on the client
running the benchmark is the bandwidth shown times the number
of remote devices as it sends the display data to each of the remote de-
vices. For the CPU, disk, and memory tests, the bandwidth required
was less than 0.3Mbps due to display updates only for a progress bar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

One Two Four Mixed Mixed iOS

Figure 3: PassMark performance; lower is better

0

2

4

6

8

10

12

CPU, Disk,
Memory

2D Tests 3D Simple 3D Complex

Ba
nd

w
id

th
 (

M
bp

s)

One Two Four Mixed Mixed iOS

Figure 4: PassMark per device bandwidth

0

5

10

15

20

25

30

35

40

45

50

0

0.5

1

1.5

2

2.5

3

N4
AOSP

N7
AOSP

N9
AOSP

N9N
AOSP

iPh N7
using
N4

N7
using
N9

N4
using
N9

N4
using
N7

N9N
using
iPh

Ba
nd

w
id

th
 (M

bp
s)

Ti
m

e
(s

)

Capture Time Total Time Preview Bandwidth Transfer Bandwidth

Figure 5: Camera latency for taking/storing pictures

0

100

200

300

400

500

600

8.0 kHz, 44.1 kHz, 48.0 kHz, 8.0 kHz, 8.0 kHz, 48.0 kHz,

Ti
m

e
(m

s)

N7 AOSP N7 Idle
N7 w/ N7 speaker N7 w/ N7 mic
N7 w/ N7 mic+speaker N7 w/ N4J mic
N7 w/ N9 speaker

20 ms 20 ms 20 ms 80 ms 81.3 ms 80 ms

Figure 6: Audio latency using Zoiper

and test results. For the 2D tests, the bandwidth required was up to
about 10Mbps for the 1536x2048 remote display tests and 4Mbps for
the 720x1280 remote display tests. Our results show thatWiFi can
meet the bandwidth requirements for 3D graphics-intensive display
data, providing goodM2 performance.

Camera latencyWe next measure camera latency performance.
Due to a lack of Android camera performance app benchmarks, we
simply ran the default Android camera app for each system and
instrumented it to measure the time to take a picture including com-
mitting it to persistent storage. When using a remote camera, the
picture was transferred from the remote camera to the default local
storage for the app.Wemeasured the performance using ten cam-
era configurations listed in Table 5, five systems, N9, N9N, N7, N4,
and iPh, and five different remote camera scenarios. The first two
remoting scenarios illustrate using a higher quality remote camera
to take pictures as both the N4 and N9 cameras are higher quality
than the N7. The second two remoting scenarios illustrate using a
small form factor system, the N4, to control cameras on larger form
factor tablets, the N9 and N7. The final scenario illustrates using a
different platform’s higher quality remote camera.
Figure 5 shows the camera performance measurements. For the

time to take apicture,we showcapture time, the time from thebutton
press until the picture is saved to storage, and total time, the time un-
til the picture is synced to persistent storage, including transferring it
over thenetwork in thecaseof remotedevices.Thecapture time isnot
the same as the time it takes for the user interface to indicate that it is
ready to take another picture, which is faster but not a true measure
of actual camera performance. For the stock systems using the local
camera, the capture and total time take less than 1.5 seconds in all

caseswith the iPh camera being the fastest; syncing time is negligible
compared to capture time. For the remote camera scenarios, capture
time is comparable to the respective local camera capture time, with
the remote iPh camera being the fastest as well. The capture times
show that M2 incurs negligible additional latency versus local cam-
era use. Total time for the remote camera scenarios is much higher
because of the time it takes to transfer the picture over thenetwork to
the default local storage of the app on the client. In the worst case of
the N7 using the N4 remote camera, the total time is almost a second
more than the capture timedue to transfer time. In contrast, thediffer-
encebetween thecaptureand total time for the remoteN9camera sce-
narios was only half a second because it uses the faster 802.11ac net-
working standard. Figure 5 also shows the bandwidth requirements
for taking a picture, including both the camera preview and transfer-
ring the picture taken from the remote camera to local storage. The
camera preview runs at a lower resolution than thenative display res-
olution, so its bandwidth requirement is less than3Mbps.Thepicture
transfer bandwidth is higher simply becauseM2 sends the picture as
fast as it can from the remote camera server to the client, so it uses as
much bandwidth as possible, up to about 45 Mbps for the faster N9.

Audio latencyWe next measure audio and microphone latency
using Zoiper [65], an audio benchmark. It measures the time from
playing a beep through the speaker, recording it through the micro-
phone, and retrieving the audio buffer. Zoiper tests different sample
rates for recording the audio, from 8 to 48 KHz, and different audio
buffer sizes for storing the audio, from recording 20 to 80ms of audio
through the microphone. The results depend on the native sample
rate of the respective system alongwith echo cancellers and filters in

0.001

0.01

0.1

1

10

100

Input/Sensors Audio Display

Ba
nd

w
id

th
 (M

bp
s)

Angry Birds (#38) Candy Crush Saga (#10)
Candy Crush Soda (#3) Clash of Clans (#6)
Crossy Road (#1) Jelly Jump (#5)
Racing Fever (#20) Subway Surfers (#7)
Surgery Simulator (#12) VLC (HD Movie)

(#N) = Google Play
top game chart rank

Figure 7: Android apps in a seven systemM2 configuration

0

0.5

1

1.5

2

2.5

Spotify YouTube Angry Birds Instagram 3D Tennis

N
or

m
al

iz
ed

 P
ow

er
 U

sa
ge

One Two Four Remote

Figure 8: Powermeasurements usingM2; lower is better

the audio path. We tested seven configurations of local and remote
speakers and microphones listed in Table 5.
Figure 6 shows the audio latency measurements. For most tests,

M2 adds negligible latency compared to stock Android, even for
using remote microphones and speakers. The one case in which M2
incurs higher performance overhead is when running the bench-
mark with both remote speaker and microphone at the 44.1 KHz
sample rate and 81.3 ms buffer size settings for Zoiper, resulting in
roughly 100 ms of additional latency and almost 20% overhead.

Multi-mobileAndroid appsTomeasure usingmultiple remote
devices with audio and display streaming, we used seven Android
systems together in the multi-mobile setup listed in Table 5. Remote
display used full 1536x2048 native display resolution with video
encoding at a variable 60 fps and a 10Mbps bit rate, and remote audio
was unencoded PCM. To stress the system, we ran ten Android apps
from Google Play, nine of the most popular gaming apps along with
the VLC [70] movie player app for comparison purposes. Each game
was played intensively for a minute, and the VLCmovie player was
used to play and skip around for a minute of Big Buck Bunny [17].

M2’s qualitative performance for all of the appswas indistinguish-
able from running on an N9 with stock Android Lollipop. Audio
was clear with no drops, and display was smooth with no noticeable
skipped frames or display degradation. Figure 7 shows the per device
average bandwidth consumption for running the various apps. Input
and sensor remoting requires only a few Kbps of bandwidth even for
intensive gaming. Audio remoting required 1 Mbps of bandwidth
for PCM raw data, though AAC encoding would reduce this further.
Display remoting for gaming required the most average bandwidth
per device, ranging from6.3Mbps forCandyCrushSoda to 17.6Mbps
for Subway Surfers. By comparison, VLC only required 4.4 Mbps.

Power consumption Tomeasure power consumption, we con-
nected an N5 to a Monsoon power monitor [47] and recorded its
overall power consumption as a device client and server when shar-
ing several individual hardware devices, sharing a combination of
hardware devices, and using a transformation plugin. Using various
popular apps, we ran M2 in five configurations listed in Table 5 with
five workloads, each run for three minutes: (1) Spotify for sharing
audio, (2) YouTube (browser) running a 1080p video for sharing a
mirrored display, (3) Angry Birds for sharing a split display, audio,
and input in a fused scenario, (4) Instagram using remote camera
for sharing the camera, (5) 3D Tennis for testing sensor to input
transformation. Display encoding was done at 1920x1080 resolution,
the maximum supported by N5, with 30 fps and a 10 Mbps bit rate.

Figure 8 shows the power measurements normalized to stock An-
droid running the respective app. For remote, power consumption is
lower using M2 as a device server instead of running the respective
Android app. For running the N5 with multiple remote devices, dis-
play sharing is the most expensive, though the cost in all cases for
the device client does not increase much with more systems. There
is negligible power overhead associated with sharing camera, sen-
sors, input, GPS, and supporting a transformation, as shown by 3D
Tennis and Instagram.While there are some additional power costs
when using M2, they are not prohibitive and can be quite modest
while delivering powerful new functionality and a much better user
experience, as in the case of 3D Tennis.

5.3 Comparison with Other Approaches
Since I/O sharing is one aspect of M2, we compared this basic func-
tionality against other systems that also provide I/O sharing. Table 6
lists thedevices supportedbyM2versusother I/Osharingsystems, in-
cludingRio [4],MobilePlus [52],AppleAirPlay [10],GoogleChrome-
cast [24], Microsoft RDP [46], and VNC [30], which are discussed
further in Section 6. None of the other systems support the range
of devices possible with M2, and device support is limited in many
cases for systems that provide it. For example, RDP andVNC support
display sharing, but at best provide poor quality for display-intensive
apps such as 3D gaming or video streaming. Rio andMobile Plus sup-
port camera sharing, but only at 2-3 fps frame rates. M2’s approach
for device data sharing supports heterogeneity, shows good perfor-
mance, and is more efficient than device API sharing approaches.
We also ran a direct I/O sharing performance comparison with

Rio since it supports the most devices other than M2. Rio runs on
Android and is open source [5], but does not work on any current
Android systems as it was designed for the discontinued Galaxy
Nexus smartphone and CyanogenMod [20] 10.1.3-RC1, based on
Android JellyBean 4.2. Updating Rio towork on any current Android
system is fundamentally problematic due toRio’s low-level approach
as discussed in Section 3. It requiresmodifications to vendor-specific
HAL libraries which are proprietary and no longer open source for
modern Android systems.We instead ported M2 to run on the old
Galaxy Nexus with JellyBean 4.2. When using the Galaxy Nexus
local camera natively, the camera preview only ran at 15 fps at the
default 480p resolution as measured by HAL statistics. M2 delivered
the same 15 fps at the same resolution when camera sharing from
oneGalaxyNexus to another, while Rio delivered only 1.6 fps at 480p

device \ system M2 Rio Mobile+ AirPlay Chromecast RDP VNC
display ✓ ✓ ✓ ✓ ✓
camera ✓ ✓ ✓
audio ✓ ✓ ✓ ✓ ✓
mic ✓ ✓

accelerometer ✓ ✓ ✓
other sensors ✓

input ✓ ✓ ✓
location ✓

Table 6: Comparison of basic I/O sharing device support

resolution, almost an order of magnitude worse performance than
M2. M2 delivered 30 fps at 720p resolution, even better than native
Galaxy Nexus performance, when camera sharing from an N7 to a
Galaxy Nexus. This was not possible with the Rio implementation.
It does not work with an N7 as it only supports camera sharing
between homogeneous Galaxy Nexus systems.

6 RELATEDWORK
At a conceptual level, M2’s goal of offering to apps, the semantic
of one, capable system out of multiple, heterogeneous, less capable
systems is similar to the goal of any distributed system, including
distributed storage [21] and distributed shared memory [37]. M2 ad-
dresses the challenges specific to dynamic, composable integration
ofmobile devices.Unlikedynamic composable computingwhichpro-
videsmobile systems amore PC experience by replacing devices [72],
M2composes thedevices ofmobile systems together. For example, in-
stead of replacing the small screen of amobile systemwith a TV [72],
M2 can additionally combine the displays ofmultiplemobile systems
together into a better display when a TV is not available.

Various previous approaches have explored remote device access,
though they do not address the important device heterogeneity and
composition challenges solved byM2. Rio [4] provides mirroring for
some devices, but has the performance, portability, and homogeneity
limitations discussed in Section 5.3. Android HAL layer approaches,
such as [32] which only supports sharing sensors, also suffer from
the same platform and version specificity issues. None of these ap-
proaches support the degree of heterogeneity supported byM2.

Remote display systems, such as VNC [30], RDP [46], THINC [15,
34], GoToMyPC [19], and X [39, 75], introduce custom display com-
mands to transport display content over the network, resulting in
poor performance for display-intensive content such as 2D and 3D
graphics [49, 76, 78]. Other approaches remote graphics by sending
OpenGL commands [29], but require substantial network bandwidth
and do not support the myriad of OpenGL extensions for mobile
systems. These approaches do not work well for display sharing
and do not support the broad range of devices available on mobile
systems. Systems such as Apple AirPlay [10] and Google Chrome-
cast [24] enable display mirroring using video encoding hardware
similar to M2, but do not provide display mirroring between tablets
and smartphones and lack support for other devices.

Some one-off apps exist for sharing a specific device. For example,
mosaic app [23] allows a user to share an image across multiple
displays. Similarly, Samsung Group Play [59] and MobiUS [66] only
allow display sharing with a pre-recorded video that has to be down-
loaded on every device. Pinch [53], allows display sharing using only
a Pinch-enabled app. Unlike M2, these apps are device-specific and

do not enable other apps to access the shared device. Pursuits [69]
and SideWays [80] track eye movements as input, but require a spe-
cific app and specialized hardware. M2 enables unmodified apps to
transparently share and combine multiple devices and introduces
new and powerful device transformations.
Sharing features such as clipboard, calls, messages, or switch-

ing views are being made available by Apple (Continuity) [13], Mi-
crosoft (Continuum) [44], various Android apps [60, 63], BlackBerry
Blend [16], and Nintendo Switch [51]. These approaches often re-
quire the same OS to avoid the heterogeneity problem, and do not
support general device sharing across multiple mobile systems. Sim-
ilarly, Mobile Plus [52] mostly shares features, but not devices such
as display or audio, by sharing IPC calls between systems. This does
not work even across different Android versions as discussed in
Section 3.2. Unlike M2, none of these systems support device trans-
formations or multi-mobile functionality.

Various cloud-based approaches aggregate some device function-
ality across multiple mobile systems. For example, by creating new
apps that obtain sensor data to predict earthquakes [35], creating
sensor maps for temperatures or pressure [45], or a mobile resource
sharing system [38]. These solutions only share a limited set of de-
vices, without display, via cloud. M2 does not require any cloud
infrastructure.
Approaches such as Recombinant Computing [22] envision cre-

ating generic broad interfaces for a limited set of shared resources,
enabling developing new apps and scenarios such as using a mobile
system to project or print a document. M2 takes a very different
data centric approach and introduces a novel device transformation
framework that works under existing unmodified mobile apps.

7 CONCLUSIONS
We have built and evaluated M2, the first system for heterogeneous,
transparent multi-mobile computing. M2 makes three key contri-
butions. First, by observing how mobile systems use higher-level
abstractions and taller interfaces, M2 introduces a new user-level
data-centric approach by exporting and importing device data in-
stead of forwarding device related calls. This results in a system that
is highly portable and can easily support different hardware devices
and software platforms, as we demonstrate by operating M2 across
heterogeneous hardware running multiple versions of Android and
iOS. Second, M2 introduces device transformation to transparently
mix and match disparate devices across different systems with het-
erogeneous data formats. This enables unmodified apps to share and
combine devices in new and powerful ways such as multi-headed
displays, Wii-like gaming, better audio quality teleconferencing,
user interfaces for disabled users, and running Android apps on
iOS systems. Finally, M2 leverages commodity mobile encoding and
encryption hardware to enable a user-level remoting approach to
provide qualitative performance over wireless networks similar to
local device hardware even for 3D games.

8 ACKNOWLEDGMENTS
Roxana Geambasu andMahadev Satyanarayanan provided helpful
comments on earlier drafts of this paper. This work was supported
in part by a Google Research Award, and NSF grants CNS-1717801
and CNS-1563555.

REFERENCES
[1] Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh. 2015. M2: Multi-Mobile

Computing. Technical Report CUCS-005-15. Department of Computer Science,
Columbia University.

[2] Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh. 2016. Heterogeneous
Multi-Mobile Computing. Technical Report CUCS-008-16. Department of
Computer Science, Columbia University.

[3] Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh. 2019. M2: Heterogeneous
Multi-Mobile Computing. https://youtu.be/BzQ_YBA7kUU.

[4] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014. Rio: A
System Solution for Sharing I/O BetweenMobile Systems. In Proceedings of the
12th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys 2014). BrettonWoods, NH, 259–272.

[5] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014.
Rio: A System Solution for Sharing I/O Between Mobile Systems.
https://www.ruf.rice.edu/~mobile/rio.html.

[6] Jeremy Andrus, Naser AlDuaij, and Jason Nieh. 2017. Binary Compatible
Graphics Support in Android for Running iOS Apps. In Proceedings of the 2017
ACM/IFIP/USENIX International Middleware Conference (Middleware 2017). Las
Vegas, NV, 55–67.

[7] JeremyAndrus,AlexanderVan’tHof,NaserAlDuaij, ChristofferDall,NicolasVien-
not, and Jason Nieh. 2014. Cider: Native Execution of iOS Apps on Android. In Pro-
ceedings of the 19th International Conference on Architectural Support for Program-
mingLanguages andOperating Systems (ASPLOS 2014). Salt LakeCity,UT, 367–381.

[8] Apple Inc. 3D Touch - iOS - Apple Developer. https://developer.apple.com/ios/
3d-touch/. Accessed: 2017-04-20.

[9] Apple, Inc. App Extensions - Apple Developer. https://developer.apple.com/app-
extensions/. Accessed: 2018-03-21.

[10] Apple Inc. Apple - AirPlay - Play Content from iOS Devices on Apple TV.
https://www.apple.com/airplay/. Accessed: 2014-12-07.

[11] Apple Inc. TV - Apple. https://www.apple.com/tv/. Accessed: 2018-08-07.
[12] Apple Inc. App Store - Apple. https://www.apple.com/ios/app-store/. Accessed:

2019-03-23.
[13] Apple Inc. 2019. Use Continuity to Connect Your Mac, iPhone, iPad, iPod touch,

and AppleWatch. https://support.apple.com/en-us/HT204681.
[14] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and

Jason Nieh. 2016. POSIX Abstractions in Modern Operating Systems: The Old, the
New, and the Missing. In Proceedings of the 8th European Conference on Computer
Systems (EuroSys 2016). London, UK, 19:1–17.

[15] Ricardo Baratto, Leonard Kim, and Jason Nieh. 2005. THINC: A Virtual Display
Architecture for Thin-Client Computing. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP 2005). Brighton, UK, 277–290.

[16] BlackBerry. BlackBerry Blend - Desktop Software for BlackBerry. https:
//us.blackberry.com/software/desktop/blackberry-blend. Accessed: 2017-03-15.

[17] Blender Foundation. Big Buck Bunny. https://peach.blender.org/. Accessed:
2018-08-07.

[18] Cesanta Software. 2019. Mongoose Embedded Web Server Library.
https://github.com/cesanta/mongoose.

[19] Citrix Systems, Inc. Remote Access | GoToMyPC. https://www.gotomypc.com/
remote-access/. Accessed: 2015-02-12.

[20] CyanogenMod Open-Source Community. 2016. CyanogenMod.
https://web.archive.org/web/20161224194030/https://www.cyanogenmod.org/.

[21] James C. Corbett and et al. 2012. Spanner: Google’s Globally-distributed Database.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI 2012). Hollywood, CA, 251–264.

[22] W. Keith Edwards, MarkW. Newman, Jana Sedivy, Trevor Smith, and Shahram
Izadi. 2002. Challenge: Recombinant Computing and the Speakeasy Approach.
In Proceedings of the 8th Annual International Conference on Mobile Computing
and Networking (MobiCom 2002). Atlanta, GA, 279–286.

[23] Darrell Etherington. 2013. Mosaic Lets You Weave A Single Dis-
play From Multiple iPhones And iPads, Offers SDK For Developers.
https://techcrunch.com/2013/04/02/mosaic-lets-you-weave-a-single-display-
from-multiple-iphones-and-ipads-offers-sdk-for-developers/.

[24] Google Inc. Chromecast - Google. https://www.google.com/chromecast.
Accessed: 2017-04-20.

[25] Google Inc. Android Open Source Project. https://source.android.com/. Accessed:
2019-03-23.

[26] Google Inc. Google Play. https://play.google.com. Accessed: 2019-03-22.
[27] Alexander Van’t Hof, Hani Jamjoom, Jason Nieh, and Dan Williams. 2015.

Flux: Multi-Surface Computing in Android. In Proceedings of the 7th European
Conference on Computer Systems (EuroSys 2015). Bordeaux, France, 24:1–17.

[28] Alexander Van’t Hof and Jason Nieh. 2019. AnDrone: Virtual Drone Computing
in the Cloud. In Proceedings of the 11th European Conference on Computer Systems
(EuroSys 2019). Dresden, Germany, 6:1–16.

[29] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D.
Kirchner, and James T. Klosowski. 2002. Chromium: A Stream-processing
Framework for Interactive Rendering on Clusters. In Proceedings of the 29th

Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
2002). San Antonio, TX, 693–702.

[30] Internet Engineering Task Force (IETF). 2011. RFC 6143 - The Remote Framebuffer
Protocol. https://tools.ietf.org/html/rfc6143.

[31] Internet Engineering Task Force (IETF). 2013. RFC 6762 - Multicast DNS.
https://tools.ietf.org/html/rfc6762.

[32] Yu-Wen Jong, Pi-Cheng Hsiu, Sheng-Wei Cheng, and Tei-Wei Kuo. 2016. A
Semantics-aware Design for Mounting Remote Sensors on Mobile Systems. In
Proceedings of the 53rd Annual Design Automation Conference (DAC 2016). Austin,
TX, 140:1–6.

[33] Lorenzo Keller, Anh Le, Blerim Cici, Hulya Seferoglu, Christina Fragouli, and
Athina Markopoulou. 2012. MicroCast: Cooperative Video Streaming on Smart-
phones. In Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services (MobiSys 2012). LowWoodBay, LakeDistrict, UK, 57–70.

[34] Joeng Kim, Ricardo Baratto, and Jason Nieh. 2006. pTHINC: A Thin-Client
Architecture for Mobile Wireless Web. In Proceedings of the 15th International
World WideWeb Conference (WWW 2006). Edinburgh, Scotland, 143–152.

[35] Qingkai Kong, Qin Lv, and Richard M. Allen. 2019. Earthquake Early Warning
and Beyond: Systems Challenges in Smartphone-based Seismic Network. In
Proceedings of the 20th International Workshop on Mobile Computing Systems and
Applications (HotMobile 2019). Santa Cruz, CA, 57–62.

[36] Richard Lawler. 2018. iOS 12 Developer Beta Points to Bezel-Less iPad with Face
ID. https://www.engadget.com/2018/08/02/ipad-pro-2-ios-12-beta-leak-bezel-
faceid/.

[37] Kai Li and Paul Hudak. 1986. Memory Coherence in Shared Virtual Memory
Systems. In Proceedings of the 5th Annual ACM Symposium on Principles of
Distributed Computing (PODC 1986). Calgary, Alberta, Canada, 229–239.

[38] Yong Li and Wei Gao. 2017. Interconnecting Heterogeneous Devices in the
Personal Mobile Cloud. In Proceedings of the 36th IEEE Conference on Computer
Communications (INFOCOM 2017). Atlanta, GA, 1–9.

[39] The Linux Information Project. 2006. An Introduction to X by the Linux
Information Project (LINFO). http://www.linfo.org/x.html.

[40] Alexander Löffler, Luciano Pica, Hilko Hoffmann, and Philipp Slusallek. 2012.
Networked Displays for VR Applications: Display as a Service (DaaS). In Virtual
Environments 2012: Proceedings of Joint Virtual Reality Conference of ICAT, EuroVR
and EGVE (JVRC) (ICAT/EGVE/EuroVR 2012). Madrid, Spain, 37–44.

[41] WenguangMao, Jian He, and Lili Qiu. 2016. CAT: High-precision Acoustic Motion
Tracking. In Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking (MobiCom 2016). New York, NY, 69–81.

[42] James Alastair McLaughlin. 2018. Very Low Footprint JSON Parser Written in
Portable ANSI C. https://github.com/udp/json-parser.

[43] Microsoft Corporation. Skype | Communication Tool for Free Calls and Chat.
https://www.skype.com. Accessed: 2019-03-21.

[44] Microsoft Corporation. Windows Continuum forWindows 10 Phones andMobile.
https://www.microsoft.com/en-us/windows/continuum. Accessed: 2017-03-15.

[45] Microsoft Corporation. 2008. SenseWeb - Microsoft Research. https:
//www.microsoft.com/en-us/research/project/senseweb/.

[46] Microsoft Corporation. 2018. Remote Desktop Protocol (Windows).
https://msdn.microsoft.com/en-us/library/aa383015.aspx.

[47] Monsoon Solutions, Inc. Monsoon Solutions | Printed Circuit Board Design &
Manufacturing. https://www.msoon.com. Accessed: 2019-03-21.

[48] Sungwon Nam, Sachin Deshpande, Venkatram Vishwanath, Byungil Jeong, Luc
Renambot, and Jason Leigh. 2010. Multi-application Inter-tile Synchronization on
Ultra-high-resolution DisplayWalls. In Proceedings of the 1st Annual ACM SIGMM
Conference on Multimedia Systems (MMSys 2010). Phoenix, AZ, 145–156.

[49] JasonNieh andS. JaeYang. 2000. Measuring theMultimedia Performanceof Server-
Based Computing. In Proceedings of the 10th International Workshop on Network
and Operating System Support for Digital Audio and Video. Chapel Hill, NC, 55–64.

[50] Jason Nieh, S. Jae Yang, and Naomi Novik. 2003. Measuring Thin-Client
Performance Using Slow-Motion Benchmarking. ACM Transactions on Computer
Systems (TOCS) 21, 1 (Feb. 2003), 87–115.

[51] Nintendo Co., Ltd. Nintendo Switch. https://www.nintendo.com/switch.
Accessed: 2017-03-15.

[52] Sangeun Oh, Hyuck Yoo, Dae R. Jeong, Duc Hoang Bui, and Insik Shin. 2017.
Mobile Plus: Multi-deviceMobile Platform for Cross-device Functionality Sharing.
In Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys 2017). Niagara Falls, NY, 332–344.

[53] Takashi Ohta and Jun Tanaka. 2012. Pinch: An Interface That Relates Applications
on Multiple Touch-screen by ’Pinching’ Gesture. In Proceedings of the 9th
International Conference on Advances in Computer Entertainment (ACE 2012).
Kathmandu, Nepal, 320–335.

[54] OpenCV team. OpenCV library. https://www.opencv.org. Accessed: 2017-04-18.
[55] OpenSignal. 2015. Android Fragmentation Visualized. https://www.opensignal.

com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_
fragmentation_report.pdf.

[56] PassMark Software, Inc. PassMark PerformanceTest - Android Apps on Google
Play. https://play.google.com/store/apps/details?id=com.passmark.pt_mobile.
Accessed: 2015-03-10.

https://youtu.be/BzQ_YBA7kUU
https://www.ruf.rice.edu/~mobile/rio.html
https://developer.apple.com/ios/3d-touch/
https://developer.apple.com/ios/3d-touch/
https://developer.apple.com/app-extensions/
https://developer.apple.com/app-extensions/
https://www.apple.com/airplay/
https://www.apple.com/tv/
https://www.apple.com/ios/app-store/
https://support.apple.com/en-us/HT204681
https://us.blackberry.com/software/desktop/blackberry-blend
https://us.blackberry.com/software/desktop/blackberry-blend
https://peach.blender.org/
https://github.com/cesanta/mongoose
https://www.gotomypc.com/remote-access/
https://www.gotomypc.com/remote-access/
https://web.archive.org/web/20161224194030/https://www.cyanogenmod.org/
https://techcrunch.com/2013/04/02/mosaic-lets-you-weave-a-single-display-from-multiple-iphones-and-ipads-offers-sdk-for-developers/
https://techcrunch.com/2013/04/02/mosaic-lets-you-weave-a-single-display-from-multiple-iphones-and-ipads-offers-sdk-for-developers/
https://www.google.com/chromecast
https://source.android.com/
https://play.google.com
https://tools.ietf.org/html/rfc6143
https://tools.ietf.org/html/rfc6762
https://www.engadget.com/2018/08/02/ipad-pro-2-ios-12-beta-leak-bezel-faceid/
https://www.engadget.com/2018/08/02/ipad-pro-2-ios-12-beta-leak-bezel-faceid/
http://www.linfo.org/x.html
https://github.com/udp/json-parser
https://www.skype.com
https://www.microsoft.com/en-us/windows/continuum
https://www.microsoft.com/en-us/research/project/senseweb/
https://www.microsoft.com/en-us/research/project/senseweb/
https://msdn.microsoft.com/en-us/library/aa383015.aspx
https://www.msoon.com
https://www.nintendo.com/switch
https://www.opencv.org
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://www.opensignal.com/sites/opensignal-com/files/data/reports/global/data-2015-08/2015_08_fragmentation_report.pdf
https://play.google.com/store/apps/details?id=com.passmark.pt_mobile

[57] Chunyi Peng, Guobin Shen, Yongguang Zhang, Yanlin Li, and Kun Tan. 2007.
BeepBeep: A High Accuracy Acoustic Ranging System Using COTS Mobile
Devices. In Proceedings of the 5th International Conference on Embedded Networked
Sensor Systems (SenSys 2007). Sydney, Australia, 1–14.

[58] Federico Perazzi, Alexander Sorkine-Hornung, Henning Zimmer, Peter Kaufmann,
OliverWang, SharonWatson, and Markus H. Gross. 2015. Panoramic Video from
Unstructured Camera Arrays. Computer Graphics Forum 34, 2 (May 2015), 57–68.

[59] Pocketnow. 2013. Samsung Group Play Video Sharing Demo at IFA 2013.
https://www.youtube.com/watch?v=hhvu9ugtVY4.

[60] Pushbullet. Pushbullet - SMS on PC - Android Apps on Google Play. https://play.
google.com/store/apps/details?id=com.pushbullet.android. Accessed: 2017-03-15.

[61] Claire Reilly. 2018. Samsung’s New Galaxy Phone Patent Is a Bezel-Less,
Notch-Free Vision of the Future. https://www.cnet.com/news/samsung-galaxy-
phone-patent-is-a-bezel-less-notch-free-slice-of-the-future/.

[62] Kay Römer. 2001. Time Synchronization in AdHocNetworks. In Proceedings of the
2nd ACM International Symposium onMobile Ad Hoc Networking and Computing
(MobiHoc 2001). Long Beach, CA, 173–182.

[63] Sand Studio. AirDroid: Remote Access and File - Android Apps on Google Play.
https://play.google.com/store/apps/details?id=com.sand.airdroid. Accessed:
2017-03-15.

[64] Arne Schmitz, Ming Li, Volker Schönefeld, and Leif Kobbelt. 2010. Ad-Hoc
Multi-Displays for Mobile Interactive Applications. In Proceedings of the 31st
AnnualConference of the EuropeanAssociation forComputerGraphics (Eurographics
2010). Norrköping, Sweden, 45–52.

[65] Securax LTD. Zoiper Audio Latency Benchmark - Android Apps on Google
Play. https://play.google.com/store/apps/details?id=com.zoiper.audiolatency.app.
Accessed: 2015-03-05.

[66] Guobin Shen, Yanlin Li, and Yongguang Zhang. 2007. MobiUS: Enable Together-
viewing Video Experience Across TwoMobile Devices. In Proceedings of the 5th
International Conference on Mobile Systems, Applications and Services (MobiSys
2007). San Juan, Puerto Rico, 30–42.

[67] Ben Shneiderman and Catherine Plaisant. 2004. Designing the User Interface:
Strategies for Effective Human-Computer Interaction (4th Edition). PearsonAddison
Wesley, Boston, MA.

[68] Liz Stinson. 2017. What’s the Big DealWith All These Bezel-Free Phones? https://
www.wired.com/story/whats-the-big-deal-with-all-these-bezel-free-phones/.

[69] Mélodie Vidal, Andreas Bulling, and Hans Gellersen. 2013. Pursuits: Spontaneous
Interaction with Displays Based on Smooth Pursuit Eye Movement andMoving
Targets. In Proceedings of the 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp 2013). Zurich, Switzerland, 439–448.

[70] VideoLAN Organization. VideoLAN - Official page for VLC media player.
https://www.videolan.org. Accessed: 2016-05-10.

[71] Wei Wang, Alex X. Liu, and Ke Sun. 2016. Device-free Gesture Tracking Using
Acoustic Signals. In Proceedings of the 22nd Annual International Conference on
Mobile Computing and Networking (MobiCom 2016). New York, NY, 82–94.

[72] Roy Want, Trevor Pering, Shivani Sud, and Barbara Rosario. 2008. Dynamic
Composable Computing. In Proceedings of the 9thWorkshop on Mobile Computing
Systems and Applications (HotMobile 2008). Napa Valley, CA, 17–21.

[73] Wi-Fi Alliance. Wi-Fi Direct | Wi-Fi Alliance. https://www.wi-fi.org/discover-
wi-fi/wi-fi-direct. Accessed: 2019-03-23.

[74] Raymond Wong. 2018. If You Hate the iPhone X ’Notch,’ These Phones Have
Some Good News for You. https://mashable.com/2018/02/26/smartphones-true-
bezel-less-displays/.

[75] X.Org Foundation. X.Org. https://www.x.org. Accessed: 2015-02-27.
[76] S. Jae Yang, Jason Nieh, Shilpa Krishnappa, Aparna Mohla, and Mahdi Sajjadpour.

2003. Web Browsing Performance of Wireless Thin-Client Computing. In
Proceedings of the 12th International World Wide Web Conference (WWW 2003).
Budapest, Hungary, 68–79.

[77] S. Jae Yang, Jason Nieh, and Naomi Novik. 2001. Measuring Thin-Client
Performance Using Slow-Motion Benchmarking. In Proceedings of the 2001
USENIX Annual Technical Conference (USENIX ATC 2001). Boston, MA, 35–49.

[78] S. Jae Yang, Jason Nieh, Matt Selsky, and Nikhil Tiwari. 2002. The Performance of
RemoteDisplayMechanisms for Thin-Client Computing. In Proceedings of the 2002
USENIX Annual Technical Conference (USENIX ATC 2002). Monterey, CA, 131–146.

[79] Katie Young. 2017. Digital Consumers Own 3.2 Connected Devices - Global-
WebIndex Blog. https://blog.globalwebindex.com/chart-of-the-day/digital-
consumers-own-3-point-2-connected-devices/.

[80] Yanxia Zhang, Andreas Bulling, and Hans Gellersen. 2013. SideWays: A Gaze
Interface for Spontaneous Interaction with Situated Displays. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI 2013). Paris,
France, 851–860.

https://www.youtube.com/watch?v=hhvu9ugtVY4
https://play.google.com/store/apps/details?id=com.pushbullet.android
https://play.google.com/store/apps/details?id=com.pushbullet.android
https://www.cnet.com/news/samsung-galaxy-phone-patent-is-a-bezel-less-notch-free-slice-of-the-future/
https://www.cnet.com/news/samsung-galaxy-phone-patent-is-a-bezel-less-notch-free-slice-of-the-future/
https://play.google.com/store/apps/details?id=com.sand.airdroid
https://play.google.com/store/apps/details?id=com.zoiper.audiolatency.app
https://www.wired.com/story/whats-the-big-deal-with-all-these-bezel-free-phones/
https://www.wired.com/story/whats-the-big-deal-with-all-these-bezel-free-phones/
https://www.videolan.org
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://www.wi-fi.org/discover-wi-fi/wi-fi-direct
https://mashable.com/2018/02/26/smartphones-true-bezel-less-displays/
https://mashable.com/2018/02/26/smartphones-true-bezel-less-displays/
https://www.x.org
https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-point-2-connected-devices/
https://blog.globalwebindex.com/chart-of-the-day/digital-consumers-own-3-point-2-connected-devices/

	Abstract
	1 Introduction
	2 Usage Model
	3 M2 Architecture
	3.1 Background
	3.2 Client-Server Device Stack
	3.3 Device Transformations
	3.4 Network Communication

	4 Implementation
	5 Evaluation
	5.1 Example Use Cases
	5.2 Performance Measurements
	5.3 Comparison with Other Approaches

	6 Related Work
	7 Conclusions
	8 Acknowledgments
	References

